HUKUM BERNOULLI

HUKUM BERNOULLI

persamaan dasar dalam hidrodinamika telah dapat dirintis dan dirumuskan oleh Bernoulli secara baik, sehingga dapat dimanfaatkan untuk menjelaskan gejala fisis yang berhubungan dengan dengan aliran air. Persamaan dasar tersebut disebut sebagai persamaan Bernoulli atau teorema Bernoulli, yakni suatu persamaan yang menjelaskan berbagai hal yang berkaitan dengan kecepatan, tinggi permukaan zat cair dan tekanannya. Persamaan yang telah dihasilkan oleh Bernoulli tersebut juga dapat disebut sebagai Hukum Bernoulli, yakni suatu hukum yang dapat digunakan untuk menjelaskan gejala yang berhubungan dengan gerakan zat alir melalui suatu penampang pipa. Hukum tersebut diturunkan dari Hukum Newton dengan berpangkal tolak pada teorema kerja-tenaga aliran zat cair dengan beberapa persyaratan antara lain aliran yang terjadi merupakan aliran steady (mantap, tunak), tak berolak (laminier, garis alir streamline), tidak kental dan tidak termampatkan. Persamaan dinyatakan dalam Hukum Bernoulli tersebut melibatkan hubungan berbagai besaran fisis dalam fluida, yakni kecepatan aliran yang memiliki satu garis arus, tinggi permukaan air yang mengalir, dan tekanannya. Bentuk hubungan yang dapat dijelaskan melalui besaran tersebut adalah besaran usaha tenaga pada zat cair.

Selanjutnya apabila pengkajian hukum ini berpangkal tolak pada hukum kekekalan massa seperti yang telah disajikan pada bab terdahulu, dengan menggunakan persyaratan seperti yang telah disajikan di bagian depan maka dalam aliran ini hukum kekekalan massa tersebut lebih mengacu pada hukum kekekalan flux massa. Oleh sebab itu dalam tabung aliran semua partikel zat cair yang lewat melalui pipa/tabung yang memiliki luas penampang tertentu diandaikan memiliki kecepatan pengaliran di satu titik adalah sama pada garis aliran yang sama. Namun demikian pada titik-titik lainnya dapat memiliki kecepatan yang berbeda.

selanjutnya untuk menurunkan persamaan yang menyatakan Hukum Bernoulli tersebut dapat dikemukakan sebagai berikut

 

 

1.      h1 dan h2 masing-masing adalah tinggi titik tertentu zat cair dalam tabung/pipa bagian kiri dan bagian kanan.

2.      v1 dan v2 adalah kecepatan aliran pada titik tertentu sari suatu zat cair kiri dan kanan.

3.      A1 dan A2 adalah luas penampang pipa bagian dalam yang dialiri zat cair sebelah kiri dan sebelah kanan.

4.      P1 dan P2 adalah tekanan pada zat cair tersebuut dari berturut-turut dari bagian kiri dan bagian kanan.

Gambar di bagian depan merupakan aliran zat cair melalui pipa yang berbeda luas penampangnya dengan tekanan yang berbeda dan terletak pada ketinggian yang berbeda hingga kecepatan pengalirannya juga berbeda. Dalam aliran tersebut diandaikan zat cair tidak termampatkan, alirannya mantap sehingga garis alir merupakan garis yang streamline, demikian pula banyaknya volume yang dapat mengalir tiap satuan waktu dari pipa sebelah kiri dan kanan adalah sama.

Dari gambar, dapat dikemukakan bahwa zat cair pada semua titik akan mendapatkan tekanan. Hal ini berarti pada kedua permukaan yang kita tinjau (lihat gambar yang diarsir) akan bekerja gaya yang arahnya ke dalam. Jika bagian ini bergerak dari posisi pertama menuju bagian kedua, gaya yang bekerja pada permukaan pertama akan melakukan usaha terhadap unsur yang ditinjau tadi sedangkan bagan tersebut akan melakukan usaha terhadap gaya yang bekerja pada permukaan sebelah kanan. Selisih antara kedua besaran usaha tersebut sama dengan perubahan energi gerak ditambah energi potensial dari bagian tersebut. Selisih kedua besaran energi tersebut disebut sebagai energi netto. Secara matematis dapat dinyatakan sebagai berikut:

p11 ∆11 – p22 ∆12 = (½ mv21 – ½ mv22) + (mgh2 – mgh1)

A ∆ 1 = v

p1 v1 – p2 v2 = ½ m (v21 – v22) + mg (h2 – h1)

 

Pada hal v = m/ρ, maka persamaan dapat diubah menjadi:

p1 (m/ρ) – p2 (m/ρ) = ½ m (v21 – v22) + mg (h2 – h1)

 

atau dapat diubah menjadi:

p1 (m/ρ) + ½ m v21 + mgh1 = p2 (m/ρ) + ½ m v22 + mgh2

 

Persamaan tersebut dapat disederhanakan menjadi:

p1 + ½ ρ v21 + ρ gh1 = p2 + ½ ρ v22 + ρ gh2

 

atau ditulis secara umum menjadi:

p + ½ ρ v2 + ρ gh = konstan

Persamaan di atas merupakan persamaan yang menyatakan Hukum Bernoulli yang menyatakan hubungan antara kecepatan aliran dengan tinggi permukaan air dan tekanannya.

Dalam kehidupan sehari-hari Hukum Bernoulli memiliki penerapan yang beragam yang ada hubungannya dengan aliran fluida, baik aliran zat cair maupun gas. Penerapan tersebut sebagian besar dimanfaatkan dalam bidang teknik dan ilmu pengetahuan yang berkaitan dengan aliran fluida. Misalnya dalam teknologi pesawat terbang Hukum Bernoulli tersebut dimanfaatkan untuk merancang desain sayap pesawat terbang. Dalam bidang yang lain misalnya desain bentuk mobil yang hemat bahan baker, kapal laut dan sebagian alat ukur yang dapat digunakan dalam suatu peralatan pengendali kecepatan dan sebagainya.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

%d blogger menyukai ini: